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Abstract—Accurate prediction of short-term highway traffic
flow is crucial for ensuring traffic safety and reducing the accident
rate. This study proposes a traffic flow prediction model based on
Variational Mode Decomposition-Slime Mould Algorithm-
Support Vector Regression (VMD-SMA-SVR). The VMD
algorithm is used to decompose traffic flow data, and the SMA
algorithm optimizes the parameters of the SVR model. The SVR
prediction models for each component are constructed and their
predictions are aggregated. Comparative experiments with
various models demonstrate that the VMD-SMA-SVR model
excels in prediction accuracy and stability. The VMD algorithm
shows good adaptability, while the SMA algorithm exhibits strong
optimization capabilities. This model effectively improves the
accuracy of short-term traffic flow prediction, featuring fewer
model parameters, high computational efficiency, and low
resource consumption, making it suitable for practical short-term
traffic flow forecasting.
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I. INTRODUCTION

Statistics show that although the mileage of highways in
China accounts for only 2.8% of the entire road traffic system,
traffic accidents on highways are responsible for 10% of the
annual traffic-related fatalities. This highlights the safety risks
associated with highways. Therefore, accurately predicting
short-term traffic flow on highways and understanding their risk
conditions are crucial for taking timely measures to reduce
traffic risks and decrease the occurrence of accidents.

To address the safety risks associated with highways,
accurately predicting short-term traffic flow is crucial. This
provides essential data for intelligent traffic systems to reduce
accidents [1]. Extensive research has been conducted on various
traffic flow prediction models, which can be categorized into
four types: linear prediction methods, traditional nonlinear
prediction methods, intelligent nonlinear prediction methods,
and combined prediction methods.

Linear prediction models include the Historical Average
(HA) model and the Autoregressive Integrated Moving Average
(ARIMA) model. The HA model, which uses past traffic
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averages, struggles with dynamic changes and complex traffic
conditions. Ahmed M S et al. [2] were the first to apply time
series theory to traffic flow prediction using the ARIMA model
for highways. Although accurate with continuous data, ARIMA
faces challenges with limited or unstable data. Improvements
like the Seasonal ARIMA model [3] and the Kalman filtering
method have been proposed. Okutani and Stephanedes [4]
introduced Kalman filtering to traffic flow prediction, validating
it with Nagoya, Japan's road network data.

Nonlinear prediction methods offer greater flexibility and
adaptability, better handling the variable states of traffic flow.
Popular methods include wavelet analysis, Support Vector
Regression (SVR), decision trees, and neural networks. Wavelet
analysis, by performing multi-scale decomposition, effectively
captures the nonlinear characteristics and sudden changes in
traffic flow. Chai et al. [5] combined Mallat wavelets with BP
(Back Propagation) neural networks to construct a short-term
traffic flow prediction model, validated with real data from the
Chengyu Expressway.

Neural networks, particularly BP neural networks, have been
widely used in traffic prediction since the 1990s. Smith et al. [6]
applied this type of neural network to short-term traffic flow
prediction, proving its superior predictive power over the
historical average and time series models. However, neural
networks require high-quality data samples for training, which
may affect performance with small datasets. To address this,
some researchers have turned to Support Vector Machines
(SVM) for traffic flow prediction. Ling et al. [7] proposed an
adaptive particle swarm optimization algorithm to optimize a
Multi-kernel Support Vector Machine model (MSVM), which
performs well even during rapid traffic changes.

With the rapid development of artificial intelligence, deep
learning has become a major trend in machine learning and has
been widely applied across industries. Researchers have begun
applying deep learning techniques to traffic flow prediction with
notable success. Zhang et al. [8] developed a deep learning-
based short-term traffic flow prediction model using
Convolutional Neural Networks (CNN), significantly reducing
prediction errors. Fang et al. [9] proposed a model combining
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Kalman filtering and Long Short-Term Memory networks
(LSTM), showing higher predictive accuracy than traditional
LSTM models. However, deep learning models require
substantial data, and their performance suffers with insufficient
data.

Traffic systems often require more than a single model for
accurate prediction, making combined models increasingly
popular. These models integrate strengths of different algorithms
for higher accuracy. For instance, Ding et al. [10] combined
SVM with BP neural networks and optimized BP parameters
using Particle Swarm Optimization (PSO), achieving better
results than single models. Wei et al. [11] developed a model
combining autoencoders with LSTM, showing good predictive
accuracy and stability.

Due to the inherent nonlinearity and high noise of traffic flow
data, researchers have combined decomposition algorithms with
prediction algorithms. For example, Shuai et al. [12] used
Singular Spectrum Analysis (SSA) to decompose traffic flow
into components, predicting each with LSTM and SVR.
However, this method is prone to frequency confusion. Zhao et
al. [13] proposed an EMD-PSO-LSTM model to reduce noise
and optimize LSTM parameters, but EMD suffers from modal
confusion. Huang et al. [14] compared various decomposition
algorithms with Bidirectional LSTM (BiLSTM) and found
Variational Mode Decomposition (VMD) to be the most stable
and adaptable. Therefore, VMD was chosen for this study.

Improper parameter selection can lead machine learning
models to local optima, reducing their generalization and
prediction accuracy. Heuristic algorithms have been used to
optimize model parameters, enhancing accuracy and stability.
Genetic Algorithms (GA) have been widely used, but require
significant computational resources [15][16]. Recently, newer
heuristic algorithms like the Grey Wolf Optimizer (GWO) [17],
Sparrow Search Algorithm (SSA) [18], and Slime Mould
Algorithm (SMA) [20] have been introduced. This study uses
SMA for its fewer parameters and robust optimization
capabilities.

This study introduces an innovative method for short-term
traffic flow prediction using the Support Vector Regression
(SVR) model. To enhance accuracy, the SVR model is
optimized using the Slime Mould Algorithm (SMA).
Additionally, the Variational Mode Decomposition (VMD)
algorithm decomposes initial traffic flow data into multiple
modal components. Separate SVR prediction models are
constructed for each component, and the predictive values are
aggregated for the final traffic flow prediction. This method's
core advantage lies in effectively capturing complex patterns in
traffic data, significantly enhancing prediction accuracy by
combining SMA and VMD.

II. METHODOLOGY

This study introduces a highway traffic flow prediction
model based on the VMD-SMA-SVR framework, whose
detailed process flow is illustrated in the diagram below (Fig. 1).
The model includes the following key steps:

1) Initially, the missing values in the dataset were imputed
based on the historical average values corresponding to the
specific time points where the data was missing;

2) Next, the completed data is processed using Variational
Mode Decomposition (VMD), an algorithm that decomposes the
data into several intrinsic mode functions (IMFs) of different
frequencies;

3) Subsequently, these IMFs are normalized, and a separate
Support Vector Regression (SVR) model is constructed for each
component. The Slime Mould Algorithm (SMA) is then
employed to fine-tune the hyperparameters of these SVR models,
thereby training more accurate models;

4) The trained and optimized models are used to predict each
IMF component individually, obtaining their forecasted values;

5) Finally, the predicted values for all IMFs are denormalized
and aggregated to reconstruct the final prediction of highway

traffic flow.
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Figure 1. VMD-SMA-SVR model Flow Chart

A. Variational Mode Decomposition

Due to the inherent nonlinearity, instability, and randomness
of highway traffic flow data, directly applying traditional
regression models for prediction often fails to achieve high
accuracy. To address this issue, this study introduces a
multiscale decomposition algorithm to meticulously decompose
the time series data of truck traffic flow. This process aims to
break down the original traffic flow data into several more stable
subsets, each of which can be predicted individually. By
accurately forecasting these more stable data components, this
research significantly enhances the overall accuracy of the
model's predictions.

Variational Mode Decomposition (VMD) is a novel signal
processing method for non-stationary signals, proposed by
Dargomiretskiy et al. [19] in 2014. The VMD algorithm is
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adaptive, non-recursive, and capable of decomposing a signal
into a sum of IMF components, each with a different bandwidth.
It is particularly suitable for complex nonlinear and non-
stationary signals. Based on Wiener filtering, VMD operates
within a variational framework to search for the optimal solution
of'the input signal, automatically updating the central frequency,
bandwidth, and corresponding sub-signals. This allows VMD to
effectively separate the independent components of a signal in
the frequency domain. Compared to the classical Empirical
Mode Decomposition (EMD) method and Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) method, VMD has a more robust theoretical
foundation, offers higher decomposition precision, and
effectively reduces the problem of mode mixing.

The decomposition process of the VMD algorithm is actually
a process of solving a variational problem. Specifically, it
decomposes a signal f(t) into K modal functions u,(t) and
minimizes the sum of the estimated bandwidths of each modal
function u (t). The steps for implementing the VMD algorithm
are as follows:

Step 1: Perform a Hilbert transform on each modal function
u, (t) to obtain the unilateral spectrum:

[s0)+ L] w0 ™

Step 2: Multiply each modal function by the estimated center
frequency e /®k* and then modulate the spectrum to the
corresponding baseband:

{[5@) + %] ] uk(t)}  eTont @)

Step 3: the Gaussian smoothing method is used to estimate
the bandwidths of the demodulated signal's modal functions
u, (t), ie., their gradient mean norms are calculated. Then,
based on this bandwidth information, the constrained variational
problem is solved. The expression of this constrained variational
problem is as follows:

[
{{uf:f.%zk} o
k s. t.zkuk =f(t)

Where, {u;} = {uy,u,, ..., ug} represents the K intrinsic mode
function (IMF) components obtained after decomposition,
{wi} = {wy, wy, ..., wg } represents the center frequencies of the
respective IMF components, d, denotes the derivative with
respect to time t, and §(t) is the unit impulse function.
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Step 4: Introduce the quadratic penalty factor a and the
Lagrange multiplier A to ensure the reconstruction accuracy of
the original signal s(t), and convert the constrained variational
formula into an unconstrained one.
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Step 5: Using the alternating direction method of multipliers,
update @}, the corresponding center frequencies w}**, and
the Lagrange multiplier A"** to find the minimum point of the
augmented Lagrangian function expression. At this point, the
solution to the variational problem is:

F(@) = S () + 22
14+ 2a(w — wy)?
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Step 6: Repeat step 5 until the iteration precision € is
satisfied, thereby obtaining k IMF components. The iteration
termination condition can be expressed as:

Zillig ™ — 13
Zillaglz
B. Slime Mould Algorithm

The Slime Mould Algorithm (SMA) is an innovative
metaheuristic optimization algorithm proposed by Li et al. [20]
in 2020. The algorithm draws inspiration from the complex and
sophisticated behaviors of the Physarum polycephalum, a slime
mold, as it forages for food in the natural world. Researchers
have developed a mathematical model that emulates the slime
mold's search mechanism, based on a comprehensive study of
these biological behaviors. Current research indicates that the
SMA algorithm excels in finding optimal solutions,
demonstrating rapid convergence capabilities and significantly
improved precision and stability compared to conventional
optimization algorithms. Owing to its outstanding optimization
performance [21], this study employs the SMA algorithm to
fine-tune the parameters of the SVR algorithm, aiming to
achieve more accurate forecasting results. The following will
outline the fundamental steps of this algorithm.

a1 (o) =

)

n+l _—
k =

(6)

(®)

When the slime mold approaches food, the mathematical
model of the slime mold algorithm can be represented by the
following equation:

Xp(©) +vp - [W- X, () = Xp (O <p

X(t+1)={ ver X(@t),r=p

)
Where, t is the current iteration number, X, (t) is the optimal
position of the slime mold individual at the t-th iteration, X, (t)
and Xp (t) are the positions of two randomly selected slime mold
individuals, v}, is the control parameter with a range of [—a, a],
v, is a parameter that linearly decreases from 1 to 0, r is a
random value between [0, 1], W is the mass of the slime mold,
representing the fitness weight, p is the control variable, v, is
the control parameter with a range of [—a, a], and the expression
is as follows:

p = tanh(|S(i) — DF|) (10)
vy, = [—a,al (11)
a = arctanh [— (t ¢ ) + 1] (12)
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Where, i € 1,2,3---,n, S(i) is the fitness value of the i-th slime
mold, DF is the best fitness value among all iterations, and the
expression for the fitness weight W is as follows:

(147 10g|2E=5D 4| condiei
. r-log m + ,condition
W (Smelllndex(i)) = 4 bF — (i) (13)
I _ .. el
tl r lOg[bF—wF +1],other

Smelllndex = sort(S) (14)

Where, bF is the best fitness value obtained in the current
iteration process, WF is the worst fitness value obtained in the
current iteration process, the condition is for individuals whose
S(i) can be ranked in the front half of the slime mold population,
Smellindex is the sequence of fitness values of the slime molds,
but for solving minimization problems, it uses an ascending sort
method.

When the slime mold envelops food, the mathematical model
of the slime mold algorithm is as follows:

rand - (UB — LB) + LB,rand < z
X={X@)+vp [W-X,() =X (@), 7 <p
ver X(@t),r=p

(15)

Where, rand and r are random values between [0,1], UB and
LB are the upper and lower bounds of the search space, z
represents the switching frequency, which determines whether
the SMA will search for other food sources or search around the
best individual.

When the slime mold grasps food, the vascular tissue and
biological oscillator of the slime mold undergo changes. The
higher the concentration of food in contact with the veins, the
stronger the oscillations generated by the biological oscillator.
Relying on these changes, the slime mold will grasp food with
higher concentrations.

The changes in the width of the slime mold's veins are
implemented using W, v,,, and v.. W simulates the oscillation
frequency of the slime mold in the vicinity under different food
concentrations. v, randomly varies within the range of [—a, a],
and gradually approaches zero as the number of iterations
increases. The value of v, oscillates between [—1,1] and
eventually tends to zero. When the slime mold chooses food, the
synergistic relationship between v, and v, plays an important
role.

C. Support Vector Regression Algorithm

Support Vector Regression (SVR) is a regression algorithm
based on Support Vector Machines (SVM), used to solve
regression problems. Its core idea is to handle regression issues
while maintaining a maximum margin principle similar to that
of Support Vector Machines. The optimization problem for the
SVR model is:

1 n
minz [wl® +C ) (6, + ) (16)
i=1
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Where, w represents the weight vector, C is the penalty
parameter, n is the number of samples in the SVR training set,
& and & are the slack variables, s.t. denotes the constraint
conditions, € is the tolerance deviation, x;represents the i-th
input data, y; represents the response variable, and b is the bias
term.

s.t.

aa7)

The final decision function of the SVR model can be
represented as:

£ = ) (@ = ak(x,x) + b (18)

i=1
Where, a; and a; are the introduced Lagrange multipliers,
which are obtained through model optimization. k(x;, x)
represents the kernel function, and here the Gaussian kernel
function is used as the kernel function. When using the Gaussian
kernel function, for any input sample x, its predicted output ¥,
can be calculated as:

n
Ypre = Z(ai - a;)exp{
i=1

Where o is the parameter of the Gaussian kernel function, which
is used to control the width and smoothness of the kernel
function. By adjusting the value of g, the fitting capability and
generalization performance of the model can be influenced.

= |lo; — x|
202

} +b (19)

III. EXPERIMENT

A. Data Processing

This study selected traffic flow data measured by a traffic
monitoring device at a highway section in Zhejiang Province
from March 1 to March 10, 2023. In this study, a method based
on historical average values was employed to impute the missing
data in the dataset, leveraging the trends observed in the
historical data to estimate the missing information. Following
data cleaning and organization, a comprehensive dataset was
constructed, consisting of a total of 2880 records, with data
collected at five-minute intervals. The first 60% of the dataset
was designated as the training set, the middle 20% as the testing
set, and the final 20% as the validation set. Furthermore, the
Min-Max normalization method was employed to preprocess the
data.

B. Baseline Models

To validate the effectiveness of the VMD-SMA-SVR model,
this study conducted a comprehensive comparison of various
models, including VMD-SVR, SMA-SVR, CEEMDAN-SMA-
SVR, VMD-SMA-LSTM, VMD-SMA-RNN, and VMD-SSA-
SVR, from both horizontal and vertical perspectives. In the
process of hyperparameter optimization, the hidden size,
learning rate, and dropout rate were selected for optimization in
the LSTM model, while the regularization parameter, kernel
coefficient, and tolerance were optimized in the SVR model.
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C. Evaluation Metrics

In this study, mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE) and
explained variance (EV) were chosen as evaluation metrics to
assess the accuracy of model predictions. The equation of these
metrics is shown as follow:

n
1 N
MAE == '[9, -yl (20)
i=1
1 n
RMSE = | (5, - 7 @)
i=1
100% < |7,
MAPE = OZ n e 22)
e Vi
=1
Var(y —9)
EV=1- T(y) (23)

Where, y; denotes the true value of the sample, ¥, denotes the
predicted value, and y, denotes the sample mean of the true data.
N denotes the full sample size. Var() denotes variance, which
quantifies the dispersion of values around the mean in a dataset.

D. Experiment Results and Analysis

Table 1 presents the various performance metrics of different
models in traffic flow prediction. From Table 1, it is evident that
the proposed VMD-SMA-SVR model exhibits the best
performance across all metrics, including MSE, RMSE, MAPE,
and EV, demonstrating its superior prediction accuracy, stability,
and capacity to explain dataset variability. This also indicates
that the application of the VMD algorithm for decomposing
traffic flow data and predicting each component separately can
significantly enhance model accuracy. Additionally, the
applicability of VMD is shown to be superior to that of the
CEEMDAN algorithm for traffic flow data. Moreover, the SMA
method exhibits higher suitability in hyperparameter
optimization compared to other optimization algorithms.

TABLE 1. PERFORMANCE COMPARISON OF DIFFERENT MODELS
Model MSE RMSE MAPE EV
VMD-SVR 1.283 1.530 8.297 0.921
SMA-SVR 4.267 5433 29.705 0.322
CEEMDAN-SMA-SVR 2.508 3381 16.122 0.685
VMD-SMA-LSTM 0.629 0.985 4.430 0.965
VMD-SMA-RNN 0.218 0.612 42.709 0.987
VMD-SSA-SVR 0.281 0.342 24.675 0.991
VMD-SMA-SVR 0.228 0.292 1.292 0.996

Fig. 2 illustrates the results of the VMD algorithm, which
decomposes the traffic flow time series data into five IMFs. The
VMD algorithm breaks down the highly fluctuating traffic flow
data into IMFs of different frequencies, enabling the prediction
model to more accurately capture the trends and patterns of each
component, thereby enhancing the model's performance.
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Fig. 3 and Fig. 4 respectively compare the prediction results
of the VMD-SMA-SVR model and the VMD-SMA-LSTM
model against the actual data values. As shown, the prediction
curve of the VMD-SMA-SVR model closely follows the actual
values for most of the time, indicating a generally superior
prediction performance. In contrast, the VMD-SMA-LSTM
model exhibits larger deviations in areas with significant
fluctuations. This suggests that, for single-source data with a
smaller dataset, the SVR model offers better prediction
performance. Furthermore, during model training, it was
observed that due to the complex network structure of the LSTM
model, it has higher computational complexity compared to the
SVR model, requiring more computational resources and longer
training time.
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IV. CONCLUSIONS

Enhancing the accuracy of short-term traffic flow forecasting
is crucial for optimizing traffic planning and management
comprehensively. This optimization not only significantly
improves travel experience and efficiency but also effectively
reduces energy consumption and environmental pollution,
thereby greatly enhancing traffic safety. Accordingly, this paper
proposes a short-term traffic flow forecasting model for
highways based on VMD-SMA-SVR. Through comparative
analysis of different models, the following conclusions were
drawn:

(1) For nonlinear traffic flow time series data with substantial
noise, employing the VMD algorithm for smoothing can
effectively avoid mode mixing and yield components with
different bandwidths, demonstrating good adaptability and
decomposition performance.

(2) Comparative analysis with other heuristic algorithms
indicates that the SMA algorithm, by leveraging the adaptive
mechanism of slime molds, enhances global search capability. It
requires fewer parameters and shows faster convergence and
better performance in finding optimal hyperparameters.

(3) Experimental results show that the proposed VMD-
SMA-SVR model significantly improves prediction accuracy in
short-term traffic flow forecasting.

(4) The proposed VMD-SMA-SVR model exhibits high
prediction accuracy, fewer model parameters, high
computational efficiency, and limited resource consumption,
making it well-suited for practical short-term traffic flow
forecasting applications.
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